qdrant_client.http.models.models module
- class AbortReshardingOperation(*, abort_resharding: Any)[source]
Bases:
BaseModel
- class AbortShardTransfer(*, shard_id: int, to_peer_id: int, from_peer_id: int)[source]
Bases:
BaseModel
- class AbortTransferOperation(*, abort_transfer: AbortShardTransfer)[source]
Bases:
BaseModel
- abort_transfer: AbortShardTransfer
- class AbsExpression(*, abs: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class AliasDescription(*, alias_name: str, collection_name: str)[source]
Bases:
BaseModel
- class AppBuildTelemetry(*, name: str, version: str, features: Optional[AppFeaturesTelemetry] = None, system: Optional[RunningEnvironmentTelemetry] = None, jwt_rbac: Optional[bool] = None, hide_jwt_dashboard: Optional[bool] = None, startup: Union[datetime, date])[source]
Bases:
BaseModel
- features: Optional[AppFeaturesTelemetry]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- system: Optional[RunningEnvironmentTelemetry]
- class AppFeaturesTelemetry(*, debug: bool, web_feature: bool, service_debug_feature: bool, recovery_mode: bool, gpu: bool)[source]
Bases:
BaseModel
- class Batch(*, ids: List[Union[int, str]], vectors: Union[List[List[float]], List[List[List[float]]], Dict[str, List[Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]]], List[Document], List[Image], List[InferenceObject]], payloads: Optional[List[Dict[str, Any]]] = None)[source]
Bases:
BaseModel
- class BinaryQuantization(*, binary: BinaryQuantizationConfig)[source]
Bases:
BaseModel
- binary: BinaryQuantizationConfig
- class BinaryQuantizationConfig(*, always_ram: Optional[bool] = None)[source]
Bases:
BaseModel
- class BoolIndexParams(*, type: BoolIndexType, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: BoolIndexType
- class BoolIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class ChangeAliasesOperation(*, actions: List[Union[CreateAliasOperation, DeleteAliasOperation, RenameAliasOperation]])[source]
Bases:
BaseModel
Operation for performing changes of collection aliases. Alias changes are atomic, meaning that no collection modifications can happen between alias operations.
- class ClearPayloadOperation(*, clear_payload: Union[PointIdsList, FilterSelector])[source]
Bases:
BaseModel
- class ClusterConfigTelemetry(*, grpc_timeout_ms: int, p2p: P2pConfigTelemetry, consensus: ConsensusConfigTelemetry)[source]
Bases:
BaseModel
- consensus: ConsensusConfigTelemetry
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- p2p: P2pConfigTelemetry
- class ClusterStatusOneOf(*, status: Literal['disabled'])[source]
Bases:
BaseModel
- class ClusterStatusOneOf1(*, status: Literal['enabled'], peer_id: int, peers: Dict[str, PeerInfo], raft_info: RaftInfo, consensus_thread_status: Union[ConsensusThreadStatusOneOf, ConsensusThreadStatusOneOf1, ConsensusThreadStatusOneOf2], message_send_failures: Dict[str, MessageSendErrors])[source]
Bases:
BaseModel
Description of enabled cluster
- message_send_failures: Dict[str, MessageSendErrors]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- peers: Dict[str, PeerInfo]
- raft_info: RaftInfo
- class ClusterStatusTelemetry(*, number_of_peers: int, term: int, commit: int, pending_operations: int, role: Optional[StateRole] = None, is_voter: bool, peer_id: Optional[int] = None, consensus_thread_status: Union[ConsensusThreadStatusOneOf, ConsensusThreadStatusOneOf1, ConsensusThreadStatusOneOf2])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- role: Optional[StateRole]
- class ClusterTelemetry(*, enabled: bool, status: Optional[ClusterStatusTelemetry] = None, config: Optional[ClusterConfigTelemetry] = None, peers: Optional[Dict[str, PeerInfo]] = None, metadata: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
- config: Optional[ClusterConfigTelemetry]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- peers: Optional[Dict[str, PeerInfo]]
- status: Optional[ClusterStatusTelemetry]
- class CollectionClusterInfo(*, peer_id: int, shard_count: int, local_shards: List[LocalShardInfo], remote_shards: List[RemoteShardInfo], shard_transfers: List[ShardTransferInfo], resharding_operations: Optional[List[ReshardingInfo]] = None)[source]
Bases:
BaseModel
Current clustering distribution for the collection
- local_shards: List[LocalShardInfo]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- remote_shards: List[RemoteShardInfo]
- resharding_operations: Optional[List[ReshardingInfo]]
- shard_transfers: List[ShardTransferInfo]
- class CollectionConfig(*, params: CollectionParams, hnsw_config: HnswConfig, optimizer_config: OptimizersConfig, wal_config: Optional[WalConfig] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, strict_mode_config: Optional[StrictModeConfigOutput] = None)[source]
Bases:
BaseModel
Information about the collection configuration
- hnsw_config: HnswConfig
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- optimizer_config: OptimizersConfig
- params: CollectionParams
- strict_mode_config: Optional[StrictModeConfigOutput]
- wal_config: Optional[WalConfig]
- class CollectionConfigTelemetry(*, params: CollectionParams, hnsw_config: HnswConfig, optimizer_config: OptimizersConfig, wal_config: WalConfig, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, strict_mode_config: Optional[StrictModeConfigOutput] = None, uuid: Optional[UUID] = None)[source]
Bases:
BaseModel
- hnsw_config: HnswConfig
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- optimizer_config: OptimizersConfig
- params: CollectionParams
- strict_mode_config: Optional[StrictModeConfigOutput]
- wal_config: WalConfig
- class CollectionDescription(*, name: str)[source]
Bases:
BaseModel
- class CollectionExistence(*, exists: bool)[source]
Bases:
BaseModel
State of existence of a collection, true = exists, false = does not exist
- class CollectionInfo(*, status: CollectionStatus, optimizer_status: Union[OptimizersStatusOneOf, OptimizersStatusOneOf1], vectors_count: Optional[int] = None, indexed_vectors_count: Optional[int] = None, points_count: Optional[int] = None, segments_count: int, config: CollectionConfig, payload_schema: Dict[str, PayloadIndexInfo])[source]
Bases:
BaseModel
Current statistics and configuration of the collection
- config: CollectionConfig
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- payload_schema: Dict[str, PayloadIndexInfo]
- status: CollectionStatus
- class CollectionParams(*, vectors: Optional[Union[VectorParams, Dict[str, VectorParams]]] = None, shard_number: Optional[int] = 1, sharding_method: Optional[ShardingMethod] = None, replication_factor: Optional[int] = 1, write_consistency_factor: Optional[int] = 1, read_fan_out_factor: Optional[int] = None, on_disk_payload: Optional[bool] = True, sparse_vectors: Optional[Dict[str, SparseVectorParams]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- sharding_method: Optional[ShardingMethod]
- sparse_vectors: Optional[Dict[str, SparseVectorParams]]
- class CollectionParamsDiff(*, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, read_fan_out_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None)[source]
Bases:
BaseModel
- class CollectionStatus(value)[source]
Bases:
str
,Enum
Current state of the collection. Green - all good. Yellow - optimization is running, 'Grey' - optimizations are possible but not triggered, Red - some operations failed and was not recovered
- class CollectionTelemetry(*, id: str, init_time_ms: int, config: CollectionConfigTelemetry, shards: List[ReplicaSetTelemetry], transfers: List[ShardTransferInfo], resharding: List[ReshardingInfo], shard_clean_tasks: Dict[str, Union[ShardCleanStatusTelemetryOneOf, ShardCleanStatusTelemetryOneOf1, ShardCleanStatusTelemetryOneOf2]])[source]
Bases:
BaseModel
- config: CollectionConfigTelemetry
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- resharding: List[ReshardingInfo]
- shards: List[ReplicaSetTelemetry]
- transfers: List[ShardTransferInfo]
- class CollectionsAggregatedTelemetry(*, vectors: int, optimizers_status: Union[OptimizersStatusOneOf, OptimizersStatusOneOf1], params: CollectionParams)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: CollectionParams
- class CollectionsAliasesResponse(*, aliases: List[AliasDescription])[source]
Bases:
BaseModel
- aliases: List[AliasDescription]
- class CollectionsResponse(*, collections: List[CollectionDescription])[source]
Bases:
BaseModel
- collections: List[CollectionDescription]
- class CollectionsTelemetry(*, number_of_collections: int, collections: Optional[List[Union[CollectionTelemetry, CollectionsAggregatedTelemetry]]] = None)[source]
Bases:
BaseModel
- class CompressionRatio(value)[source]
Bases:
str
,Enum
An enumeration.
- class ConsensusConfigTelemetry(*, max_message_queue_size: int, tick_period_ms: int, bootstrap_timeout_sec: int)[source]
Bases:
BaseModel
- class ConsensusThreadStatusOneOf(*, consensus_thread_status: Literal['working'], last_update: Union[datetime, date])[source]
Bases:
BaseModel
- class ConsensusThreadStatusOneOf1(*, consensus_thread_status: Literal['stopped'])[source]
Bases:
BaseModel
- class ConsensusThreadStatusOneOf2(*, consensus_thread_status: Literal['stopped_with_err'], err: str)[source]
Bases:
BaseModel
- class ContextExamplePair(*, positive: Union[int, str, List[float], SparseVector], negative: Union[int, str, List[float], SparseVector])[source]
Bases:
BaseModel
- class ContextPair(*, positive: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject], negative: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject])[source]
Bases:
BaseModel
- class ContextQuery(*, context: Union[ContextPair, List[ContextPair]])[source]
Bases:
BaseModel
- class CountRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, filter: Optional[Filter] = None, exact: Optional[bool] = True)[source]
Bases:
BaseModel
Count Request Counts the number of points which satisfy the given filter. If filter is not provided, the count of all points in the collection will be returned.
- filter: Optional[Filter]
- class CountResult(*, count: int)[source]
Bases:
BaseModel
- class CpuEndian(value)[source]
Bases:
str
,Enum
An enumeration.
- class CreateAlias(*, collection_name: str, alias_name: str)[source]
Bases:
BaseModel
Create alternative name for a collection. Collection will be available under both names for search, retrieve,
- class CreateAliasOperation(*, create_alias: CreateAlias)[source]
Bases:
BaseModel
- create_alias: CreateAlias
- class CreateCollection(*, vectors: Optional[Union[VectorParams, Dict[str, VectorParams]]] = None, shard_number: Optional[int] = None, sharding_method: Optional[ShardingMethod] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[HnswConfigDiff] = None, wal_config: Optional[WalConfigDiff] = None, optimizers_config: Optional[OptimizersConfigDiff] = None, init_from: Optional[InitFrom] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, sparse_vectors: Optional[Dict[str, SparseVectorParams]] = None, strict_mode_config: Optional[StrictModeConfig] = None)[source]
Bases:
BaseModel
Operation for creating new collection and (optionally) specify index params
- hnsw_config: Optional[HnswConfigDiff]
- init_from: Optional[InitFrom]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- optimizers_config: Optional[OptimizersConfigDiff]
- sharding_method: Optional[ShardingMethod]
- sparse_vectors: Optional[Dict[str, SparseVectorParams]]
- strict_mode_config: Optional[StrictModeConfig]
- wal_config: Optional[WalConfigDiff]
- class CreateFieldIndex(*, field_name: str, field_schema: Optional[Union[PayloadSchemaType, KeywordIndexParams, IntegerIndexParams, FloatIndexParams, GeoIndexParams, TextIndexParams, BoolIndexParams, DatetimeIndexParams, UuidIndexParams]] = None)[source]
Bases:
BaseModel
- class CreateShardingKey(*, shard_key: Union[int, str], shards_number: Optional[int] = None, replication_factor: Optional[int] = None, placement: Optional[List[int]] = None)[source]
Bases:
BaseModel
- class CreateShardingKeyOperation(*, create_sharding_key: CreateShardingKey)[source]
Bases:
BaseModel
- create_sharding_key: CreateShardingKey
- class Datatype(value)[source]
Bases:
str
,Enum
An enumeration.
- class DatetimeExpression(*, datetime: str)[source]
Bases:
BaseModel
- class DatetimeIndexParams(*, type: DatetimeIndexType, is_principal: Optional[bool] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: DatetimeIndexType
- class DatetimeIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class DatetimeKeyExpression(*, datetime_key: str)[source]
Bases:
BaseModel
- class DatetimeRange(*, lt: Optional[Union[datetime, date]] = None, gt: Optional[Union[datetime, date]] = None, gte: Optional[Union[datetime, date]] = None, lte: Optional[Union[datetime, date]] = None)[source]
Bases:
BaseModel
Range filter request
- class DecayParamsExpression(*, x: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression], target: Optional[Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression]] = None, scale: Optional[float] = None, midpoint: Optional[float] = None)[source]
Bases:
BaseModel
- class DeleteAlias(*, alias_name: str)[source]
Bases:
BaseModel
Delete alias if exists
- class DeleteAliasOperation(*, delete_alias: DeleteAlias)[source]
Bases:
BaseModel
Delete alias if exists
- delete_alias: DeleteAlias
- class DeleteOperation(*, delete: Union[PointIdsList, FilterSelector])[source]
Bases:
BaseModel
- class DeletePayload(*, keys: List[str], points: Optional[List[Union[int, str]]] = None, filter: Optional[Filter] = None, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
This data structure is used in API interface and applied across multiple shards
- filter: Optional[Filter]
- class DeletePayloadOperation(*, delete_payload: DeletePayload)[source]
Bases:
BaseModel
- delete_payload: DeletePayload
- class DeleteVectors(*, points: Optional[List[Union[int, str]]] = None, filter: Optional[Filter] = None, vector: List[str], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- class DeleteVectorsOperation(*, delete_vectors: DeleteVectors)[source]
Bases:
BaseModel
- delete_vectors: DeleteVectors
- class Direction(value)[source]
Bases:
str
,Enum
An enumeration.
- class Disabled(value)[source]
Bases:
str
,Enum
An enumeration.
- class DiscoverInput(*, target: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject], context: Union[List[ContextPair], ContextPair])[source]
Bases:
BaseModel
- context: Union[List[ContextPair], ContextPair]
- class DiscoverQuery(*, discover: DiscoverInput)[source]
Bases:
BaseModel
- discover: DiscoverInput
- class DiscoverRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, target: Optional[Union[int, str, List[float], SparseVector]] = None, context: Optional[List[ContextExamplePair]] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, limit: int, offset: Optional[int] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, using: Optional[str] = None, lookup_from: Optional[LookupLocation] = None)[source]
Bases:
BaseModel
Use context and a target to find the most similar points, constrained by the context.
- context: Optional[List[ContextExamplePair]]
- filter: Optional[Filter]
- lookup_from: Optional[LookupLocation]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- class DiscoverRequestBatch(*, searches: List[DiscoverRequest])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- searches: List[DiscoverRequest]
- class Distance(value)[source]
Bases:
str
,Enum
Type of internal tags, build from payload Distance function types used to compare vectors
- class DivParams(*, left: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression], right: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression], by_zero_default: Optional[float] = None)[source]
Bases:
BaseModel
- class Document(*, text: str, model: str, options: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
WARN: Work-in-progress, unimplemented Text document for embedding. Requires inference infrastructure, unimplemented.
- class DropShardingKey(*, shard_key: Union[int, str])[source]
Bases:
BaseModel
- class DropShardingKeyOperation(*, drop_sharding_key: DropShardingKey)[source]
Bases:
BaseModel
- drop_sharding_key: DropShardingKey
- class ErrorResponse(*, time: Optional[float] = None, status: Optional[ErrorResponseStatus] = None, result: Optional[Any] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- status: Optional[ErrorResponseStatus]
- class ErrorResponseStatus(*, error: Optional[str] = None)[source]
Bases:
BaseModel
- class ExpDecayExpression(*, exp_decay: DecayParamsExpression)[source]
Bases:
BaseModel
- exp_decay: DecayParamsExpression
- class ExpExpression(*, exp: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class FacetRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, key: str, limit: Optional[int] = None, filter: Optional[Filter] = None, exact: Optional[bool] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- class FacetResponse(*, hits: List[FacetValueHit])[source]
Bases:
BaseModel
- hits: List[FacetValueHit]
- class FacetValueHit(*, value: Union[bool, int, str], count: int)[source]
Bases:
BaseModel
- class FieldCondition(*, key: str, match: Optional[Union[MatchValue, MatchText, MatchAny, MatchExcept]] = None, range: Optional[Union[Range, DatetimeRange]] = None, geo_bounding_box: Optional[GeoBoundingBox] = None, geo_radius: Optional[GeoRadius] = None, geo_polygon: Optional[GeoPolygon] = None, values_count: Optional[ValuesCount] = None, is_empty: Optional[bool] = None, is_null: Optional[bool] = None)[source]
Bases:
BaseModel
All possible payload filtering conditions
- geo_bounding_box: Optional[GeoBoundingBox]
- geo_polygon: Optional[GeoPolygon]
- geo_radius: Optional[GeoRadius]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- values_count: Optional[ValuesCount]
- class Filter(*, should: Optional[Union[List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]] = None, min_should: Optional[MinShould] = None, must: Optional[Union[List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]] = None, must_not: Optional[Union[List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]] = None)[source]
Bases:
BaseModel
- min_should: Optional[MinShould]
- class FilterSelector(*, filter: Filter, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
- filter: Filter
- class FloatIndexParams(*, type: FloatIndexType, is_principal: Optional[bool] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: FloatIndexType
- class FloatIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class FormulaQuery(*, formula: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression], defaults: Optional[Dict[str, Any]] = {})[source]
Bases:
BaseModel
- class Fusion(value)[source]
Bases:
str
,Enum
Fusion algorithm allows to combine results of multiple prefetches. Available fusion algorithms: * rrf - Reciprocal Rank Fusion * dbsf - Distribution-Based Score Fusion
- class GaussDecayExpression(*, gauss_decay: DecayParamsExpression)[source]
Bases:
BaseModel
- gauss_decay: DecayParamsExpression
- class GeoBoundingBox(*, top_left: GeoPoint, bottom_right: GeoPoint)[source]
Bases:
BaseModel
Geo filter request Matches coordinates inside the rectangle, described by coordinates of lop-left and bottom-right edges
- bottom_right: GeoPoint
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- top_left: GeoPoint
- class GeoDistance(*, geo_distance: GeoDistanceParams)[source]
Bases:
BaseModel
- geo_distance: GeoDistanceParams
- class GeoDistanceParams(*, origin: GeoPoint, to: str)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- origin: GeoPoint
- class GeoIndexParams(*, type: GeoIndexType, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: GeoIndexType
- class GeoIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class GeoLineString(*, points: List[GeoPoint])[source]
Bases:
BaseModel
Ordered sequence of GeoPoints representing the line
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- points: List[GeoPoint]
- class GeoPoint(*, lon: float, lat: float)[source]
Bases:
BaseModel
Geo point payload schema
- class GeoPolygon(*, exterior: GeoLineString, interiors: Optional[List[GeoLineString]] = None)[source]
Bases:
BaseModel
Geo filter request Matches coordinates inside the polygon, defined by exterior and interiors
- exterior: GeoLineString
- interiors: Optional[List[GeoLineString]]
- class GeoRadius(*, center: GeoPoint, radius: float)[source]
Bases:
BaseModel
Geo filter request Matches coordinates inside the circle of radius and center with coordinates center
- center: GeoPoint
- class GpuDeviceTelemetry(*, name: str)[source]
Bases:
BaseModel
- class GroupsResult(*, groups: List[PointGroup])[source]
Bases:
BaseModel
- groups: List[PointGroup]
- class GrpcTelemetry(*, responses: Dict[str, OperationDurationStatistics])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- responses: Dict[str, OperationDurationStatistics]
- class HardwareTelemetry(*, collection_data: Dict[str, HardwareUsage])[source]
Bases:
BaseModel
- collection_data: Dict[str, HardwareUsage]
- class HardwareUsage(*, cpu: int, payload_io_read: int, payload_io_write: int, payload_index_io_read: int, payload_index_io_write: int, vector_io_read: int, vector_io_write: int)[source]
Bases:
BaseModel
Usage of the hardware resources, spent to process the request
- class HasIdCondition(*, has_id: List[Union[int, str]])[source]
Bases:
BaseModel
ID-based filtering condition
- class HasVectorCondition(*, has_vector: str)[source]
Bases:
BaseModel
Filter points which have specific vector assigned
- class HnswConfig(*, m: int, ef_construct: int, full_scan_threshold: int, max_indexing_threads: Optional[int] = 0, on_disk: Optional[bool] = None, payload_m: Optional[int] = None)[source]
Bases:
BaseModel
Config of HNSW index
- class HnswConfigDiff(*, m: Optional[int] = None, ef_construct: Optional[int] = None, full_scan_threshold: Optional[int] = None, max_indexing_threads: Optional[int] = None, on_disk: Optional[bool] = None, payload_m: Optional[int] = None)[source]
Bases:
BaseModel
- class Image(*, image: Any, model: str, options: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
WARN: Work-in-progress, unimplemented Image object for embedding. Requires inference infrastructure, unimplemented.
- class IndexesOneOf(*, type: Literal['plain'], options: Any)[source]
Bases:
BaseModel
Do not use any index, scan whole vector collection during search. Guarantee 100% precision, but may be time consuming on large collections.
- class IndexesOneOf1(*, type: Literal['hnsw'], options: HnswConfig)[source]
Bases:
BaseModel
Use filterable HNSW index for approximate search. Is very fast even on a very huge collections, but require additional space to store index and additional time to build it.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- options: HnswConfig
- class InferenceObject(*, object: Any, model: str, options: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
WARN: Work-in-progress, unimplemented Custom object for embedding. Requires inference infrastructure, unimplemented.
- class InitFrom(*, collection: str)[source]
Bases:
BaseModel
Operation for creating new collection and (optionally) specify index params
- class InlineResponse200(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- usage: Optional[HardwareUsage]
- class InlineResponse2001(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[TelemetryData] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[TelemetryData]
- usage: Optional[HardwareUsage]
- class InlineResponse20010(*, time: Optional[float] = None, status: Optional[str] = None, result: Optional[bool] = None)[source]
Bases:
BaseModel
- class InlineResponse20011(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[SnapshotDescription]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[List[SnapshotDescription]]
- usage: Optional[HardwareUsage]
- class InlineResponse20012(*, time: Optional[float] = None, status: Optional[str] = None, result: Optional[SnapshotDescription] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[SnapshotDescription]
- class InlineResponse20013(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[Record] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[Record]
- usage: Optional[HardwareUsage]
- class InlineResponse20014(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[Record]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[List[Record]]
- usage: Optional[HardwareUsage]
- class InlineResponse20015(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[UpdateResult]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[List[UpdateResult]]
- usage: Optional[HardwareUsage]
- class InlineResponse20016(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[ScrollResult] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[ScrollResult]
- usage: Optional[HardwareUsage]
- class InlineResponse20017(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[ScoredPoint]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[List[ScoredPoint]]
- usage: Optional[HardwareUsage]
- class InlineResponse20018(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[List[ScoredPoint]]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[List[List[ScoredPoint]]]
- usage: Optional[HardwareUsage]
- class InlineResponse20019(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[GroupsResult] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[GroupsResult]
- usage: Optional[HardwareUsage]
- class InlineResponse2002(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[LocksOption] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[LocksOption]
- usage: Optional[HardwareUsage]
- class InlineResponse20020(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CountResult] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[CountResult]
- usage: Optional[HardwareUsage]
- class InlineResponse20021(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[FacetResponse] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[FacetResponse]
- usage: Optional[HardwareUsage]
- class InlineResponse20022(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[QueryResponse] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[QueryResponse]
- usage: Optional[HardwareUsage]
- class InlineResponse20023(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[List[QueryResponse]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[List[QueryResponse]]
- usage: Optional[HardwareUsage]
- class InlineResponse20024(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[SearchMatrixPairsResponse] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[SearchMatrixPairsResponse]
- usage: Optional[HardwareUsage]
- class InlineResponse20025(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[SearchMatrixOffsetsResponse] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[SearchMatrixOffsetsResponse]
- usage: Optional[HardwareUsage]
- class InlineResponse2003(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[Union[ClusterStatusOneOf, ClusterStatusOneOf1]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- usage: Optional[HardwareUsage]
- class InlineResponse2004(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionsResponse] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[CollectionsResponse]
- usage: Optional[HardwareUsage]
- class InlineResponse2005(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionInfo] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[CollectionInfo]
- usage: Optional[HardwareUsage]
- class InlineResponse2006(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[UpdateResult] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[UpdateResult]
- usage: Optional[HardwareUsage]
- class InlineResponse2007(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionExistence] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[CollectionExistence]
- usage: Optional[HardwareUsage]
- class InlineResponse2008(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionClusterInfo] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[CollectionClusterInfo]
- usage: Optional[HardwareUsage]
- class InlineResponse2009(*, usage: Optional[HardwareUsage] = None, time: Optional[float] = None, status: Optional[str] = None, result: Optional[CollectionsAliasesResponse] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- result: Optional[CollectionsAliasesResponse]
- usage: Optional[HardwareUsage]
- class InlineResponse202(*, time: Optional[float] = None, status: Optional[str] = None)[source]
Bases:
BaseModel
- class IntegerIndexParams(*, type: IntegerIndexType, lookup: Optional[bool] = None, range: Optional[bool] = None, is_principal: Optional[bool] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: IntegerIndexType
- class IntegerIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class IsEmptyCondition(*, is_empty: PayloadField)[source]
Bases:
BaseModel
Select points with empty payload for a specified field
- is_empty: PayloadField
- class IsNullCondition(*, is_null: PayloadField)[source]
Bases:
BaseModel
Select points with null payload for a specified field
- is_null: PayloadField
- class KeywordIndexParams(*, type: KeywordIndexType, is_tenant: Optional[bool] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: KeywordIndexType
- class KeywordIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class LinDecayExpression(*, lin_decay: DecayParamsExpression)[source]
Bases:
BaseModel
- lin_decay: DecayParamsExpression
- class LnExpression(*, ln: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class LocalShardInfo(*, shard_id: int, shard_key: Optional[Union[int, str]] = None, points_count: int, state: ReplicaState)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- state: ReplicaState
- class LocalShardTelemetry(*, variant_name: Optional[str] = None, status: Optional[ShardStatus] = None, total_optimized_points: int, segments: List[SegmentTelemetry], optimizations: OptimizerTelemetry, async_scorer: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- optimizations: OptimizerTelemetry
- segments: List[SegmentTelemetry]
- status: Optional[ShardStatus]
- class LocksOption(*, error_message: Optional[str] = None, write: bool)[source]
Bases:
BaseModel
- class Log10Expression(*, log10: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class LookupLocation(*, collection: str, vector: Optional[str] = None, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
Defines a location to use for looking up the vector. Specifies collection and vector field name.
- class MatchAny(*, any: Union[List[str], List[int]])[source]
Bases:
BaseModel
Exact match on any of the given values
- class MatchExcept(*, except_: Union[List[str], List[int]])[source]
Bases:
BaseModel
Should have at least one value not matching the any given values
- class MatchText(*, text: str)[source]
Bases:
BaseModel
Full-text match of the strings.
- class MatchValue(*, value: Union[bool, int, str])[source]
Bases:
BaseModel
Exact match of the given value
- class MaxOptimizationThreadsSetting(value)[source]
Bases:
str
,Enum
An enumeration.
- class MemoryTelemetry(*, active_bytes: int, allocated_bytes: int, metadata_bytes: int, resident_bytes: int, retained_bytes: int)[source]
Bases:
BaseModel
- class MessageSendErrors(*, count: int, latest_error: Optional[str] = None, latest_error_timestamp: Optional[Union[datetime, date]] = None)[source]
Bases:
BaseModel
Message send failures for a particular peer
- class MinShould(*, conditions: List[Union[FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter]], min_count: int)[source]
Bases:
BaseModel
- class Modifier(value)[source]
Bases:
str
,Enum
If used, include weight modification, which will be applied to sparse vectors at query time: None - no modification (default) Idf - inverse document frequency, based on statistics of the collection
- class MoveShard(*, shard_id: int, to_peer_id: int, from_peer_id: int, method: Optional[Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3]] = None)[source]
Bases:
BaseModel
- class MoveShardOperation(*, move_shard: MoveShard)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- move_shard: MoveShard
- class MultExpression(*, mult: List[Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression]])[source]
Bases:
BaseModel
- class MultiVectorComparator(value)[source]
Bases:
str
,Enum
An enumeration.
- class MultiVectorConfig(*, comparator: MultiVectorComparator)[source]
Bases:
BaseModel
- comparator: MultiVectorComparator
- class NamedSparseVector(*, name: str, vector: SparseVector)[source]
Bases:
BaseModel
Sparse vector data with name
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- vector: SparseVector
- class NamedVector(*, name: str, vector: List[float])[source]
Bases:
BaseModel
Dense vector data with name
- class NearestQuery(*, nearest: Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject])[source]
Bases:
BaseModel
- class NegExpression(*, neg: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class Nested(*, key: str, filter: Filter)[source]
Bases:
BaseModel
Select points with payload for a specified nested field
- filter: Filter
- class NestedCondition(*, nested: Nested)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- nested: Nested
- class OperationDurationStatistics(*, count: int, fail_count: Optional[int] = None, avg_duration_micros: Optional[float] = None, min_duration_micros: Optional[float] = None, max_duration_micros: Optional[float] = None, total_duration_micros: int, last_responded: Optional[Union[datetime, date]] = None)[source]
Bases:
BaseModel
- class OptimizerTelemetry(*, status: Union[OptimizersStatusOneOf, OptimizersStatusOneOf1], optimizations: OperationDurationStatistics, log: List[TrackerTelemetry])[source]
Bases:
BaseModel
- log: List[TrackerTelemetry]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- optimizations: OperationDurationStatistics
- class OptimizersConfig(*, deleted_threshold: float, vacuum_min_vector_number: int, default_segment_number: int, max_segment_size: Optional[int] = None, memmap_threshold: Optional[int] = None, indexing_threshold: Optional[int] = None, flush_interval_sec: int, max_optimization_threads: Optional[int] = None)[source]
Bases:
BaseModel
- class OptimizersConfigDiff(*, deleted_threshold: Optional[float] = None, vacuum_min_vector_number: Optional[int] = None, default_segment_number: Optional[int] = None, max_segment_size: Optional[int] = None, memmap_threshold: Optional[int] = None, indexing_threshold: Optional[int] = None, flush_interval_sec: Optional[int] = None, max_optimization_threads: Optional[Union[int, MaxOptimizationThreadsSetting]] = None)[source]
Bases:
BaseModel
- class OptimizersStatusOneOf(value)[source]
Bases:
str
,Enum
Optimizers are reporting as expected
- class OptimizersStatusOneOf1(*, error: str)[source]
Bases:
BaseModel
Something wrong happened with optimizers
- class OrderBy(*, key: str, direction: Optional[Direction] = None, start_from: Optional[Union[int, float, datetime, date]] = None)[source]
Bases:
BaseModel
- direction: Optional[Direction]
- class OrderByQuery(*, order_by: Union[str, OrderBy])[source]
Bases:
BaseModel
- class OverwritePayloadOperation(*, overwrite_payload: SetPayload)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- overwrite_payload: SetPayload
- class P2pConfigTelemetry(*, connection_pool_size: int)[source]
Bases:
BaseModel
- class PayloadField(*, key: str)[source]
Bases:
BaseModel
Payload field
- class PayloadIndexInfo(*, data_type: PayloadSchemaType, params: Optional[Union[KeywordIndexParams, IntegerIndexParams, FloatIndexParams, GeoIndexParams, TextIndexParams, BoolIndexParams, DatetimeIndexParams, UuidIndexParams]] = None, points: int)[source]
Bases:
BaseModel
Display payload field type & index information
- data_type: PayloadSchemaType
- class PayloadIndexTelemetry(*, field_name: Optional[str] = None, points_values_count: int, points_count: int, histogram_bucket_size: Optional[int] = None)[source]
Bases:
BaseModel
- class PayloadSchemaType(value)[source]
Bases:
str
,Enum
All possible names of payload types
- class PayloadSelectorExclude(*, exclude: List[str])[source]
Bases:
BaseModel
- class PayloadSelectorInclude(*, include: List[str])[source]
Bases:
BaseModel
- class PayloadStorageTypeOneOf(*, type: Literal['in_memory'])[source]
Bases:
BaseModel
- class PayloadStorageTypeOneOf1(*, type: Literal['on_disk'])[source]
Bases:
BaseModel
- class PayloadStorageTypeOneOf2(*, type: Literal['mmap'])[source]
Bases:
BaseModel
- class PeerInfo(*, uri: str)[source]
Bases:
BaseModel
Information of a peer in the cluster
- class PointGroup(*, hits: List[ScoredPoint], id: Union[int, str], lookup: Optional[Record] = None)[source]
Bases:
BaseModel
- hits: List[ScoredPoint]
- lookup: Optional[Record]
- class PointIdsList(*, points: List[Union[int, str]], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
- class PointRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, ids: List[Union[int, str]], with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None)[source]
Bases:
BaseModel
- class PointStruct(*, id: Union[int, str], vector: Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]], Document, Image, InferenceObject], payload: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
- class PointVectors(*, id: Union[int, str], vector: Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]], Document, Image, InferenceObject]], Document, Image, InferenceObject])[source]
Bases:
BaseModel
- class PointsBatch(*, batch: Batch, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
- batch: Batch
- class PointsList(*, points: List[PointStruct], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- points: List[PointStruct]
- class PowExpression(*, pow: PowParams)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- pow: PowParams
- class PowParams(*, base: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression], exponent: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class Prefetch(*, prefetch: Optional[Union[List[Prefetch], Prefetch]] = None, query: Optional[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, FormulaQuery, SampleQuery]] = None, using: Optional[str] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, score_threshold: Optional[float] = None, limit: Optional[int] = None, lookup_from: Optional[LookupLocation] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- lookup_from: Optional[LookupLocation]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- class ProductQuantization(*, product: ProductQuantizationConfig)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- product: ProductQuantizationConfig
- class ProductQuantizationConfig(*, compression: CompressionRatio, always_ram: Optional[bool] = None)[source]
Bases:
BaseModel
- compression: CompressionRatio
- class QuantizationSearchParams(*, ignore: Optional[bool] = False, rescore: Optional[bool] = None, oversampling: Optional[float] = None)[source]
Bases:
BaseModel
Additional parameters of the search
- class QueryGroupsRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, prefetch: Optional[Union[List[Prefetch], Prefetch]] = None, query: Optional[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, FormulaQuery, SampleQuery]] = None, using: Optional[str] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, score_threshold: Optional[float] = None, with_vector: Optional[Union[bool, List[str]]] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, lookup_from: Optional[LookupLocation] = None, group_by: str, group_size: Optional[int] = None, limit: Optional[int] = None, with_lookup: Optional[Union[str, WithLookup]] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- lookup_from: Optional[LookupLocation]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- class QueryRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, prefetch: Optional[Union[List[Prefetch], Prefetch]] = None, query: Optional[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject, NearestQuery, RecommendQuery, DiscoverQuery, ContextQuery, OrderByQuery, FusionQuery, FormulaQuery, SampleQuery]] = None, using: Optional[str] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, score_threshold: Optional[float] = None, limit: Optional[int] = None, offset: Optional[int] = None, with_vector: Optional[Union[bool, List[str]]] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, lookup_from: Optional[LookupLocation] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- lookup_from: Optional[LookupLocation]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- class QueryRequestBatch(*, searches: List[QueryRequest])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- searches: List[QueryRequest]
- class QueryResponse(*, points: List[ScoredPoint])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- points: List[ScoredPoint]
- class RaftInfo(*, term: int, commit: int, pending_operations: int, leader: Optional[int] = None, role: Optional[StateRole] = None, is_voter: bool)[source]
Bases:
BaseModel
Summary information about the current raft state
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- role: Optional[StateRole]
- class Range(*, lt: Optional[float] = None, gt: Optional[float] = None, gte: Optional[float] = None, lte: Optional[float] = None)[source]
Bases:
BaseModel
Range filter request
- class ReadConsistencyType(value)[source]
Bases:
str
,Enum
majority - send N/2+1 random request and return points, which present on all of them * quorum - send requests to all nodes and return points which present on majority of nodes * all - send requests to all nodes and return points which present on all nodes
- class RecommendGroupsRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, positive: Optional[List[Union[int, str, List[float], SparseVector]]] = [], negative: Optional[List[Union[int, str, List[float], SparseVector]]] = [], strategy: Optional[RecommendStrategy] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[LookupLocation] = None, group_by: str, group_size: int, limit: int, with_lookup: Optional[Union[str, WithLookup]] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- lookup_from: Optional[LookupLocation]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- strategy: Optional[RecommendStrategy]
- class RecommendInput(*, positive: Optional[List[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject]]] = None, negative: Optional[List[Union[List[float], SparseVector, List[List[float]], int, str, Document, Image, InferenceObject]]] = None, strategy: Optional[RecommendStrategy] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- strategy: Optional[RecommendStrategy]
- class RecommendQuery(*, recommend: RecommendInput)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- recommend: RecommendInput
- class RecommendRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, positive: Optional[List[Union[int, str, List[float], SparseVector]]] = [], negative: Optional[List[Union[int, str, List[float], SparseVector]]] = [], strategy: Optional[RecommendStrategy] = None, filter: Optional[Filter] = None, params: Optional[SearchParams] = None, limit: int, offset: Optional[int] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None, using: Optional[str] = None, lookup_from: Optional[LookupLocation] = None)[source]
Bases:
BaseModel
Recommendation request. Provides positive and negative examples of the vectors, which can be ids of points that are already stored in the collection, raw vectors, or even ids and vectors combined. Service should look for the points which are closer to positive examples and at the same time further to negative examples. The concrete way of how to compare negative and positive distances is up to the strategy chosen.
- filter: Optional[Filter]
- lookup_from: Optional[LookupLocation]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- strategy: Optional[RecommendStrategy]
- class RecommendRequestBatch(*, searches: List[RecommendRequest])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- searches: List[RecommendRequest]
- class RecommendStrategy(value)[source]
Bases:
str
,Enum
How to use positive and negative examples to find the results, default is average_vector: * average_vector - Average positive and negative vectors and create a single query with the formula query = avg_pos + avg_pos - avg_neg. Then performs normal search. * best_score - Uses custom search objective. Each candidate is compared against all examples, its score is then chosen from the max(max_pos_score, max_neg_score). If the max_neg_score is chosen then it is squared and negated, otherwise it is just the max_pos_score. * sum_scores - Uses custom search objective. Compares against all inputs, sums all the scores. Scores against positive vectors are added, against negatives are subtracted.
- class Record(*, id: Union[int, str], payload: Optional[Dict[str, Any]] = None, vector: Optional[Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]]]]]] = None, shard_key: Optional[Union[int, str]] = None, order_value: Optional[Union[int, float]] = None)[source]
Bases:
BaseModel
Point data
- class RemoteShardInfo(*, shard_id: int, shard_key: Optional[Union[int, str]] = None, peer_id: int, state: ReplicaState)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- state: ReplicaState
- class RemoteShardTelemetry(*, shard_id: int, peer_id: Optional[int] = None, searches: OperationDurationStatistics, updates: OperationDurationStatistics)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- searches: OperationDurationStatistics
- updates: OperationDurationStatistics
- class RenameAlias(*, old_alias_name: str, new_alias_name: str)[source]
Bases:
BaseModel
Change alias to a new one
- class RenameAliasOperation(*, rename_alias: RenameAlias)[source]
Bases:
BaseModel
Change alias to a new one
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- rename_alias: RenameAlias
- class Replica(*, shard_id: int, peer_id: int)[source]
Bases:
BaseModel
- class ReplicaSetTelemetry(*, id: int, key: Optional[Union[int, str]] = None, local: Optional[LocalShardTelemetry] = None, remote: List[RemoteShardTelemetry], replicate_states: Dict[str, ReplicaState])[source]
Bases:
BaseModel
- local: Optional[LocalShardTelemetry]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- remote: List[RemoteShardTelemetry]
- replicate_states: Dict[str, ReplicaState]
- class ReplicaState(value)[source]
Bases:
str
,Enum
State of the single shard within a replica set.
- class ReplicateShard(*, shard_id: int, to_peer_id: int, from_peer_id: int, method: Optional[Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3]] = None)[source]
Bases:
BaseModel
- class ReplicateShardOperation(*, replicate_shard: ReplicateShard)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- replicate_shard: ReplicateShard
- class RequestsTelemetry(*, rest: WebApiTelemetry, grpc: GrpcTelemetry)[source]
Bases:
BaseModel
- grpc: GrpcTelemetry
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- rest: WebApiTelemetry
- class ReshardingDirectionOneOf(value)[source]
Bases:
str
,Enum
Scale up, add a new shard
- class ReshardingDirectionOneOf1(value)[source]
Bases:
str
,Enum
Scale down, remove a shard
- class ReshardingInfo(*, direction: Union[ReshardingDirectionOneOf, ReshardingDirectionOneOf1], shard_id: int, peer_id: int, shard_key: Optional[Union[int, str]] = None)[source]
Bases:
BaseModel
- class RestartTransfer(*, shard_id: int, from_peer_id: int, to_peer_id: int, method: Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3])[source]
Bases:
BaseModel
- class RestartTransferOperation(*, restart_transfer: RestartTransfer)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- restart_transfer: RestartTransfer
- class RunningEnvironmentTelemetry(*, distribution: Optional[str] = None, distribution_version: Optional[str] = None, is_docker: bool, cores: Optional[int] = None, ram_size: Optional[int] = None, disk_size: Optional[int] = None, cpu_flags: str, cpu_endian: Optional[CpuEndian] = None, gpu_devices: Optional[List[GpuDeviceTelemetry]] = None)[source]
Bases:
BaseModel
- cpu_endian: Optional[CpuEndian]
- gpu_devices: Optional[List[GpuDeviceTelemetry]]
- class Sample(value)[source]
Bases:
str
,Enum
An enumeration.
- class SampleQuery(*, sample: Sample)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- sample: Sample
- class ScalarQuantization(*, scalar: ScalarQuantizationConfig)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- scalar: ScalarQuantizationConfig
- class ScalarQuantizationConfig(*, type: ScalarType, quantile: Optional[float] = None, always_ram: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: ScalarType
- class ScalarType(value)[source]
Bases:
str
,Enum
An enumeration.
- class ScoredPoint(*, id: Union[int, str], version: int, score: float, payload: Optional[Dict[str, Any]] = None, vector: Optional[Union[List[float], List[List[float]], Dict[str, Union[List[float], SparseVector, List[List[float]]]]]] = None, shard_key: Optional[Union[int, str]] = None, order_value: Optional[Union[int, float]] = None)[source]
Bases:
BaseModel
Search result
- class ScrollRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, offset: Optional[Union[int, str]] = None, limit: Optional[int] = None, filter: Optional[Filter] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, order_by: Optional[Union[str, OrderBy]] = None)[source]
Bases:
BaseModel
Scroll request - paginate over all points which matches given condition
- filter: Optional[Filter]
- class ScrollResult(*, points: List[Record], next_page_offset: Optional[Union[int, str]] = None)[source]
Bases:
BaseModel
Result of the points read request
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- points: List[Record]
- class SearchGroupsRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, vector: Union[List[float], NamedVector, NamedSparseVector], filter: Optional[Filter] = None, params: Optional[SearchParams] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None, group_by: str, group_size: int, limit: int, with_lookup: Optional[Union[str, WithLookup]] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- class SearchMatrixOffsetsResponse(*, offsets_row: List[int], offsets_col: List[int], scores: List[float], ids: List[Union[int, str]])[source]
Bases:
BaseModel
- class SearchMatrixPair(*, a: Union[int, str], b: Union[int, str], score: float)[source]
Bases:
BaseModel
Pair of points (a, b) with score
- class SearchMatrixPairsResponse(*, pairs: List[SearchMatrixPair])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- pairs: List[SearchMatrixPair]
- class SearchMatrixRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, filter: Optional[Filter] = None, sample: Optional[int] = None, limit: Optional[int] = None, using: Optional[str] = None)[source]
Bases:
BaseModel
- filter: Optional[Filter]
- class SearchParams(*, hnsw_ef: Optional[int] = None, exact: Optional[bool] = False, quantization: Optional[QuantizationSearchParams] = None, indexed_only: Optional[bool] = False)[source]
Bases:
BaseModel
Additional parameters of the search
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- quantization: Optional[QuantizationSearchParams]
- class SearchRequest(*, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, vector: Union[List[float], NamedVector, NamedSparseVector], filter: Optional[Filter] = None, params: Optional[SearchParams] = None, limit: int, offset: Optional[int] = None, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vector: Optional[Union[bool, List[str]]] = None, score_threshold: Optional[float] = None)[source]
Bases:
BaseModel
Search request. Holds all conditions and parameters for the search of most similar points by vector similarity given the filtering restrictions.
- filter: Optional[Filter]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[SearchParams]
- class SearchRequestBatch(*, searches: List[SearchRequest])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- searches: List[SearchRequest]
- class SegmentConfig(*, vector_data: Optional[Dict[str, VectorDataConfig]] = {}, sparse_vector_data: Optional[Dict[str, SparseVectorDataConfig]] = None, payload_storage_type: Union[PayloadStorageTypeOneOf, PayloadStorageTypeOneOf1, PayloadStorageTypeOneOf2])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- sparse_vector_data: Optional[Dict[str, SparseVectorDataConfig]]
- vector_data: Optional[Dict[str, VectorDataConfig]]
- class SegmentInfo(*, segment_type: SegmentType, num_vectors: int, num_points: int, num_indexed_vectors: int, num_deleted_vectors: int, vectors_size_bytes: int, payloads_size_bytes: int, ram_usage_bytes: int, disk_usage_bytes: int, is_appendable: bool, index_schema: Dict[str, PayloadIndexInfo], vector_data: Dict[str, VectorDataInfo])[source]
Bases:
BaseModel
Aggregated information about segment
- index_schema: Dict[str, PayloadIndexInfo]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- segment_type: SegmentType
- vector_data: Dict[str, VectorDataInfo]
- class SegmentTelemetry(*, info: SegmentInfo, config: SegmentConfig, vector_index_searches: List[VectorIndexSearchesTelemetry], payload_field_indices: List[PayloadIndexTelemetry])[source]
Bases:
BaseModel
- config: SegmentConfig
- info: SegmentInfo
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- payload_field_indices: List[PayloadIndexTelemetry]
- vector_index_searches: List[VectorIndexSearchesTelemetry]
- class SegmentType(value)[source]
Bases:
str
,Enum
Type of segment
- class SetPayload(*, payload: Dict[str, Any], points: Optional[List[Union[int, str]]] = None, filter: Optional[Filter] = None, shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None, key: Optional[str] = None)[source]
Bases:
BaseModel
This data structure is used in API interface and applied across multiple shards
- filter: Optional[Filter]
- class SetPayloadOperation(*, set_payload: SetPayload)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- set_payload: SetPayload
- class ShardCleanStatusFailedTelemetry(*, reason: str)[source]
Bases:
BaseModel
- class ShardCleanStatusProgressTelemetry(*, deleted_points: int)[source]
Bases:
BaseModel
- class ShardCleanStatusTelemetryOneOf(value)[source]
Bases:
str
,Enum
An enumeration.
- class ShardCleanStatusTelemetryOneOf1(*, progress: ShardCleanStatusProgressTelemetry)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- progress: ShardCleanStatusProgressTelemetry
- class ShardCleanStatusTelemetryOneOf2(*, failed: ShardCleanStatusFailedTelemetry)[source]
Bases:
BaseModel
- failed: ShardCleanStatusFailedTelemetry
- class ShardSnapshotRecover(*, location: str, priority: Optional[SnapshotPriority] = None, checksum: Optional[str] = None, api_key: Optional[str] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- priority: Optional[SnapshotPriority]
- class ShardStatus(value)[source]
Bases:
str
,Enum
Current state of the shard (supports same states as the collection) Green - all good. Yellow - optimization is running, 'Grey' - optimizations are possible but not triggered, Red - some operations failed and was not recovered
- class ShardTransferInfo(*, shard_id: int, to_shard_id: Optional[int] = None, from_: int, to: int, sync: bool, method: Optional[Union[ShardTransferMethodOneOf, ShardTransferMethodOneOf1, ShardTransferMethodOneOf2, ShardTransferMethodOneOf3]] = None, comment: Optional[str] = None)[source]
Bases:
BaseModel
- class ShardTransferMethodOneOf(value)[source]
Bases:
str
,Enum
Stream all shard records in batches until the whole shard is transferred.
- class ShardTransferMethodOneOf1(value)[source]
Bases:
str
,Enum
Snapshot the shard, transfer and restore it on the receiver.
- class ShardTransferMethodOneOf2(value)[source]
Bases:
str
,Enum
Attempt to transfer shard difference by WAL delta.
- class ShardTransferMethodOneOf3(value)[source]
Bases:
str
,Enum
Shard transfer for resharding: stream all records in batches until all points are transferred.
- class ShardingMethod(value)[source]
Bases:
str
,Enum
An enumeration.
- class SnapshotDescription(*, name: str, creation_time: Optional[str] = None, size: int, checksum: Optional[str] = None)[source]
Bases:
BaseModel
- class SnapshotPriority(value)[source]
Bases:
str
,Enum
Defines source of truth for snapshot recovery: NoSync means - restore snapshot without any additional synchronization. Snapshot means - prefer snapshot data over the current state. Replica means - prefer existing data over the snapshot.
- class SnapshotRecover(*, location: str, priority: Optional[SnapshotPriority] = None, checksum: Optional[str] = None, api_key: Optional[str] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- priority: Optional[SnapshotPriority]
- class SparseIndexConfig(*, full_scan_threshold: Optional[int] = None, index_type: Union[SparseIndexTypeOneOf, SparseIndexTypeOneOf1, SparseIndexTypeOneOf2], datatype: Optional[VectorStorageDatatype] = None)[source]
Bases:
BaseModel
Configuration for sparse inverted index.
- datatype: Optional[VectorStorageDatatype]
- class SparseIndexParams(*, full_scan_threshold: Optional[int] = None, on_disk: Optional[bool] = None, datatype: Optional[Datatype] = None)[source]
Bases:
BaseModel
Configuration for sparse inverted index.
- datatype: Optional[Datatype]
- class SparseIndexTypeOneOf(value)[source]
Bases:
str
,Enum
Mutable RAM sparse index
- class SparseIndexTypeOneOf1(value)[source]
Bases:
str
,Enum
Immutable RAM sparse index
- class SparseIndexTypeOneOf2(value)[source]
Bases:
str
,Enum
Mmap sparse index
- class SparseVector(*, indices: List[int], values: List[float])[source]
Bases:
BaseModel
Sparse vector structure
- class SparseVectorDataConfig(*, index: SparseIndexConfig, storage_type: Optional[Union[SparseVectorStorageTypeOneOf, SparseVectorStorageTypeOneOf1]] = None)[source]
Bases:
BaseModel
Config of single sparse vector data storage
- index: SparseIndexConfig
- class SparseVectorParams(*, index: Optional[SparseIndexParams] = None, modifier: Optional[Modifier] = None)[source]
Bases:
BaseModel
Params of single sparse vector data storage
- index: Optional[SparseIndexParams]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- modifier: Optional[Modifier]
- class SparseVectorStorageTypeOneOf(value)[source]
Bases:
str
,Enum
Storage on disk
- class SparseVectorStorageTypeOneOf1(value)[source]
Bases:
str
,Enum
Storage in memory maps
- class SqrtExpression(*, sqrt: Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression])[source]
Bases:
BaseModel
- class StartResharding(*, direction: Union[ReshardingDirectionOneOf, ReshardingDirectionOneOf1], peer_id: Optional[int] = None, shard_key: Optional[Union[int, str]] = None)[source]
Bases:
BaseModel
- class StartReshardingOperation(*, start_resharding: StartResharding)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- start_resharding: StartResharding
- class StateRole(value)[source]
Bases:
str
,Enum
Role of the peer in the consensus
- class StrictModeConfig(*, enabled: Optional[bool] = None, max_query_limit: Optional[int] = None, max_timeout: Optional[int] = None, unindexed_filtering_retrieve: Optional[bool] = None, unindexed_filtering_update: Optional[bool] = None, search_max_hnsw_ef: Optional[int] = None, search_allow_exact: Optional[bool] = None, search_max_oversampling: Optional[float] = None, upsert_max_batchsize: Optional[int] = None, max_collection_vector_size_bytes: Optional[int] = None, read_rate_limit: Optional[int] = None, write_rate_limit: Optional[int] = None, max_collection_payload_size_bytes: Optional[int] = None, max_points_count: Optional[int] = None, filter_max_conditions: Optional[int] = None, condition_max_size: Optional[int] = None, multivector_config: Optional[Dict[str, StrictModeMultivector]] = None, sparse_config: Optional[Dict[str, StrictModeSparse]] = None)[source]
Bases:
BaseModel
- class StrictModeConfigOutput(*, enabled: Optional[bool] = None, max_query_limit: Optional[int] = None, max_timeout: Optional[int] = None, unindexed_filtering_retrieve: Optional[bool] = None, unindexed_filtering_update: Optional[bool] = None, search_max_hnsw_ef: Optional[int] = None, search_allow_exact: Optional[bool] = None, search_max_oversampling: Optional[float] = None, upsert_max_batchsize: Optional[int] = None, max_collection_vector_size_bytes: Optional[int] = None, read_rate_limit: Optional[int] = None, write_rate_limit: Optional[int] = None, max_collection_payload_size_bytes: Optional[int] = None, max_points_count: Optional[int] = None, filter_max_conditions: Optional[int] = None, condition_max_size: Optional[int] = None, multivector_config: Optional[Dict[str, StrictModeMultivectorOutput]] = None, sparse_config: Optional[Dict[str, StrictModeSparseOutput]] = None)[source]
Bases:
BaseModel
- class StrictModeMultivector(*, max_vectors: Optional[int] = None)[source]
Bases:
BaseModel
- class StrictModeMultivectorOutput(*, max_vectors: Optional[int] = None)[source]
Bases:
BaseModel
- class StrictModeSparse(*, max_length: Optional[int] = None)[source]
Bases:
BaseModel
- class StrictModeSparseOutput(*, max_length: Optional[int] = None)[source]
Bases:
BaseModel
- class SumExpression(*, sum: List[Union[float, str, FieldCondition, IsEmptyCondition, IsNullCondition, HasIdCondition, HasVectorCondition, NestedCondition, Filter, GeoDistance, DatetimeExpression, DatetimeKeyExpression, MultExpression, SumExpression, NegExpression, AbsExpression, DivExpression, SqrtExpression, PowExpression, ExpExpression, Log10Expression, LnExpression, LinDecayExpression, ExpDecayExpression, GaussDecayExpression]])[source]
Bases:
BaseModel
- class TelemetryData(*, id: str, app: AppBuildTelemetry, collections: CollectionsTelemetry, cluster: Optional[ClusterTelemetry] = None, requests: Optional[RequestsTelemetry] = None, memory: Optional[MemoryTelemetry] = None, hardware: Optional[HardwareTelemetry] = None)[source]
Bases:
BaseModel
- app: AppBuildTelemetry
- cluster: Optional[ClusterTelemetry]
- collections: CollectionsTelemetry
- hardware: Optional[HardwareTelemetry]
- memory: Optional[MemoryTelemetry]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- requests: Optional[RequestsTelemetry]
- class TextIndexParams(*, type: TextIndexType, tokenizer: Optional[TokenizerType] = None, min_token_len: Optional[int] = None, max_token_len: Optional[int] = None, lowercase: Optional[bool] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- tokenizer: Optional[TokenizerType]
- type: TextIndexType
- class TextIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class TokenizerType(value)[source]
Bases:
str
,Enum
An enumeration.
- class TrackerStatusOneOf(value)[source]
Bases:
str
,Enum
An enumeration.
- class TrackerStatusOneOf1(*, cancelled: str)[source]
Bases:
BaseModel
- class TrackerStatusOneOf2(*, error: str)[source]
Bases:
BaseModel
- class TrackerTelemetry(*, name: str, segment_ids: List[int], status: Union[TrackerStatusOneOf, TrackerStatusOneOf1, TrackerStatusOneOf2], start_at: Union[datetime, date], end_at: Optional[Union[datetime, date]] = None)[source]
Bases:
BaseModel
Tracker object used in telemetry
- class UpdateCollection(*, vectors: Optional[Dict[str, VectorParamsDiff]] = None, optimizers_config: Optional[OptimizersConfigDiff] = None, params: Optional[CollectionParamsDiff] = None, hnsw_config: Optional[HnswConfigDiff] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization, Disabled]] = None, sparse_vectors: Optional[Dict[str, SparseVectorParams]] = None, strict_mode_config: Optional[StrictModeConfig] = None)[source]
Bases:
BaseModel
Operation for updating parameters of the existing collection
- hnsw_config: Optional[HnswConfigDiff]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- optimizers_config: Optional[OptimizersConfigDiff]
- params: Optional[CollectionParamsDiff]
- strict_mode_config: Optional[StrictModeConfig]
- class UpdateOperations(*, operations: List[Union[UpsertOperation, DeleteOperation, SetPayloadOperation, OverwritePayloadOperation, DeletePayloadOperation, ClearPayloadOperation, UpdateVectorsOperation, DeleteVectorsOperation]])[source]
Bases:
BaseModel
- class UpdateResult(*, operation_id: Optional[int] = None, status: UpdateStatus)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- status: UpdateStatus
- class UpdateStatus(value)[source]
Bases:
str
,Enum
Acknowledged - Request is saved to WAL and will be process in a queue. Completed - Request is completed, changes are actual.
- class UpdateVectors(*, points: List[PointVectors], shard_key: Optional[Union[int, str, List[Union[int, str]]]] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- points: List[PointVectors]
- class UpdateVectorsOperation(*, update_vectors: UpdateVectors)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- update_vectors: UpdateVectors
- class UpsertOperation(*, upsert: Union[PointsBatch, PointsList])[source]
Bases:
BaseModel
- class UuidIndexParams(*, type: UuidIndexType, is_tenant: Optional[bool] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- type: UuidIndexType
- class UuidIndexType(value)[source]
Bases:
str
,Enum
An enumeration.
- class ValuesCount(*, lt: Optional[int] = None, gt: Optional[int] = None, gte: Optional[int] = None, lte: Optional[int] = None)[source]
Bases:
BaseModel
Values count filter request
- class VectorDataConfig(*, size: int, distance: Distance, storage_type: Union[VectorStorageTypeOneOf, VectorStorageTypeOneOf1, VectorStorageTypeOneOf2, VectorStorageTypeOneOf3], index: Union[IndexesOneOf, IndexesOneOf1], quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, multivector_config: Optional[MultiVectorConfig] = None, datatype: Optional[VectorStorageDatatype] = None)[source]
Bases:
BaseModel
Config of single vector data storage
- datatype: Optional[VectorStorageDatatype]
- distance: Distance
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- multivector_config: Optional[MultiVectorConfig]
- class VectorDataInfo(*, num_vectors: int, num_indexed_vectors: int, num_deleted_vectors: int)[source]
Bases:
BaseModel
- class VectorIndexSearchesTelemetry(*, index_name: Optional[str] = None, unfiltered_plain: OperationDurationStatistics, unfiltered_hnsw: OperationDurationStatistics, unfiltered_sparse: OperationDurationStatistics, filtered_plain: OperationDurationStatistics, filtered_small_cardinality: OperationDurationStatistics, filtered_large_cardinality: OperationDurationStatistics, filtered_exact: OperationDurationStatistics, filtered_sparse: OperationDurationStatistics, unfiltered_exact: OperationDurationStatistics)[source]
Bases:
BaseModel
- filtered_exact: OperationDurationStatistics
- filtered_large_cardinality: OperationDurationStatistics
- filtered_plain: OperationDurationStatistics
- filtered_small_cardinality: OperationDurationStatistics
- filtered_sparse: OperationDurationStatistics
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- unfiltered_exact: OperationDurationStatistics
- unfiltered_hnsw: OperationDurationStatistics
- unfiltered_plain: OperationDurationStatistics
- unfiltered_sparse: OperationDurationStatistics
- class VectorParams(*, size: int, distance: Distance, hnsw_config: Optional[HnswConfigDiff] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization]] = None, on_disk: Optional[bool] = None, datatype: Optional[Datatype] = None, multivector_config: Optional[MultiVectorConfig] = None)[source]
Bases:
BaseModel
Params of single vector data storage
- datatype: Optional[Datatype]
- distance: Distance
- hnsw_config: Optional[HnswConfigDiff]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- multivector_config: Optional[MultiVectorConfig]
- class VectorParamsDiff(*, hnsw_config: Optional[HnswConfigDiff] = None, quantization_config: Optional[Union[ScalarQuantization, ProductQuantization, BinaryQuantization, Disabled]] = None, on_disk: Optional[bool] = None)[source]
Bases:
BaseModel
- hnsw_config: Optional[HnswConfigDiff]
- class VectorStorageDatatype(value)[source]
Bases:
str
,Enum
Storage types for vectors
- class VectorStorageTypeOneOf(value)[source]
Bases:
str
,Enum
Storage in memory (RAM) Will be very fast at the cost of consuming a lot of memory.
- class VectorStorageTypeOneOf1(value)[source]
Bases:
str
,Enum
Storage in mmap file, not appendable Search performance is defined by disk speed and the fraction of vectors that fit in memory.
- class VectorStorageTypeOneOf2(value)[source]
Bases:
str
,Enum
Storage in chunked mmap files, appendable Search performance is defined by disk speed and the fraction of vectors that fit in memory.
- class VectorStorageTypeOneOf3(value)[source]
Bases:
str
,Enum
Same as ChunkedMmap, but vectors are forced to be locked in RAM In this way we avoid cold requests to disk, but risk to run out of memory Designed as a replacement for Memory, which doesn't depend on RocksDB
- class VersionInfo(*, title: str, version: str, commit: Optional[str] = None)[source]
Bases:
BaseModel
- class WalConfig(*, wal_capacity_mb: int, wal_segments_ahead: int)[source]
Bases:
BaseModel
- class WalConfigDiff(*, wal_capacity_mb: Optional[int] = None, wal_segments_ahead: Optional[int] = None)[source]
Bases:
BaseModel
- class WebApiTelemetry(*, responses: Dict[str, Dict[str, OperationDurationStatistics]])[source]
Bases:
BaseModel
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- responses: Dict[str, Dict[str, OperationDurationStatistics]]
- class WithLookup(*, collection: str, with_payload: Optional[Union[bool, List[str], PayloadSelectorInclude, PayloadSelectorExclude]] = None, with_vectors: Optional[Union[bool, List[str]]] = None)[source]
Bases:
BaseModel
- class WriteOrdering(value)[source]
Bases:
str
,Enum
Defines write ordering guarantees for collection operations * weak - write operations may be reordered, works faster, default * medium - write operations go through dynamically selected leader, may be inconsistent for a short period of time in case of leader change * strong - Write operations go through the permanent leader, consistent, but may be unavailable if leader is down